0,00 HUF

Nincsenek termékek a kosárban.

2024. március 28.

Precíziós technikák a szőlőtermesztésben

Napjainkban leginkább a szántóföldi kultúrákban alkalmazzák a precíziós gazdálkodás elemeit, de a kertészeti ágazatokban is terjednek az új módszerek, így a szőlőtermesztésben is egyre nagyobb teret kapnak a digitális megoldások. A precíziós módszerek egyszerre szolgálják a környezetterhelés mérséklését, a munkaerőhiány kezelését, valamint a termés mennyiségének növelését és minőségének javítását.

A megvásárolható eszközök mellett az utóbbi években mind több szolgáltató segíti a szőlészek precíziós, helyspecifikus gazdálkodását.

A precíziós gazdálkodás célja, hogy korszerű technológiai megoldásokkal növelni tudjuk gazdaságunk hatékonyságát, termelőképességét, miközben csökkentjük a káros anyagok kibocsátását és a környezetterhelést.

Ennek módja – leegyszerűsítve – az, hogy a gazdaságban adatokat gyűjtünk, majd azokat feldolgozva hozunk döntéseket és végzünk például termesztéstechnológiai műveleteket. A folyamat ennél természetesen árnyaltabb, most néhány, szőlőtermesztésben alkalmazott precíziós megoldást mutatunk be.

Időzített növényvédelem

A legáltalánosabban használt precíziós módszer az állományklíma adataira alapozott növényvédelem. Ebben az esetben meteorológiai állomások gyűjtik az adatokat, amit azok feldolgozása követ. A precíziós gazdálkodásban erre, vagyis az időben és térben gyorsan változó, nagy tömegű adat elemzésére, tárolására, továbbítására használják a „big data” kifejezést. Az adatok birtokában előre tudjuk jelezni a kórokozók fellépését, ami segít jól meghatározni a növényvédelmi kezelések időpontját.

A meteorológiai adatok gyűjtése ma már rutinszerű, és a szolgáltatók, ha a nyers adatokat nem is minden esetben, de az azokból számolt növényvédelmi előrejelzést a gazdálkodók rendelkezésére bocsátják.

Ez történhet nagyobb régiókra vonatkozóan, de a megrendelő a saját ültetvényében is elhelyezhet olyan állomást, ami folyamatosan tájékoztatja a sorok állományklímájáról és a szükséges növényvédelmi teendőkről.

Amennyiben a termőhelyek klimatikus adatairól szeretnénk tájékozódni, a meteorológiai állomások mellett egyéb mobil eszközök is a rendelkezésünkre állnak. A hőkamerák vagy adatgyűjtő szenzorok segítségével például a lombozat hőmérsékleti viszonyait elemezhetjük, ami a zöldmunkák elvégzésé-ben vagy a növény vízállapotának leírásában lehet segítségünkre. A szőlőültetvény állományklímájának jellemzése nem csupán a föld feletti tőkerészekre korlátozódik. Különösen a klímaváltozás tükrében a talaj fontos adatokat szolgáltathat akár a sorok között, akár a sorok alatt, így a talajhőmérséklet- és talajnedvesség-szenzorok használata nagy hangsúlyt kaphat a jövőben az ültetvények öntözésvezérlésében.

Látható erőnlét

A szőlőültetvény állagfelmérésében és a növények erőnlétének leírásában ugyancsak döntő szerep jut a precíziós módszereknek. Már a nagy felbontású hagyományos RGB-fényképek is számos adattal szolgálhatnak a gazdálkodóknak, hiszen a tőkehiányok vagy a tőkék egyedi növekedési üteme megismerhető anélkül, hogy tőkénként kellene bejárni az ültetvényt.

A multispektrális felvételek ennél is mélyebb ismereteket adnak, ugyanis a vegetációs indexek nem csupán a tőkék jelenlétét vagy hiányát mutatják, de a fiziológiai állapotukat is tükrözik.

A leggyakrabban alkalmazott vegetációs index az NDVI (normalized difference vegetation index – normalizált vegetációs index), ami egy dimenzió nélküli mérőszám. Kiszámításához a közeli infravörös és a látható vörös sugárzási tartományban visszavert intenzitások különbségének és összegének a hányadosát határozzák meg [NDVI = (NIR – Red) / (NIR + Red)]. Az eddigi kutatások alapján az NDVI-ből készített térképek összefüggnek a termésmennyiséggel, a növények vízállapotával, a lombozat méretével (LAI-index) és a tőkék egészségi állapotával.

Ahová szükséges

Szőlőültetvényeinkben a legtöbb termesztéstechnológiai műveletet gépekkel végezzük, ennek egyik feltétele a traktor és a vontatott munkagép közötti kommunikáció megteremtése. Erre szolgál az ISOBUS szabvány, ami lehetővé teszi, hogy az eltérő gyártók eszközei kommunikálni tudjanak egymással, vagyis az erőgép kezelője utasításokat (adatgyűjtés és -továbbítás, beállítások) adhasson a vontatott munkagépnek még akkor is, ha a két eszközt nem ugyanaz a cég gyártotta.

A rendszer révén a korábban begyűjtött adatok alapján rugalmasan módosítható például a kijuttatott tápanyag vagy növényvédő szer mennyisége (variable rate ferti­li­zation, va­riable rate plant protection).

Előbbi esetén az ültetvény – rögzített GPS-koordinátájú – pontjairól gyűjtött talaj- vagy növényminták tápanyagtartalma vagy az NDVI alapján készíthetünk térképet, majd ezt továbbítjuk a munkagépnek, ami haladás közben a GPS-koordinátákhoz rendelt információk alapján adja ki a szükséges mennyiségű tápanyagot. Az eljárással a tápelemek pótlása nem táblaszinten, hanem kisebb területi egységek alapján, specifikusan történhet.

Öt országban népszerűsítik

A Transfarm 4.0 Interreg pályázat célja, hogy a közép-európai régió országaiban bemutassa és népszerűsítse a precíziós gazdálkodás módszereit. A programban a Magyar Agrár- és Élettudományi Egyetem Szőlészeti és Borászati Intézete, valamint az AgroIT klaszter mellett több olaszországi, szlovén, lengyel és osztrák egyetem, kutatóintézet és klaszter vesz részt. A program szabadföldi kísérleteit határon átnyúló együttműködések keretében végezzük. A MATE és a linzi székhelyű Linz Center of Mechatronics közös kutatásában szőlőültetvények növényélettani és állományklíma-vizsgálatával foglalkozunk. A precíziós megfigyeléseknek a Mikóczy és Mikóczy Családi Gazdaság ad otthont Tata melletti szőlőültetvényükben, ahol a hagyományos meteorológiai állomások mellett
IR-hőmérővel, valamint NDVI (normalized difference vegetation index) és PRI- (photochemical reflectance index) szenzorokkal elemezzük a tőkék fiziológiai állapotát. A talajban elhelyezett szenzorok segítségével a gyökérzóna nedvességtartalmát követjük nyomon. A programban részt vevő szlovén University of Maribor és az AE-ROBO-NET, valamint az olaszországi CREA (Centro di Ricerca per la Viticoltura) és a Maschio Gaspardo közös kutatásában egy olyan permetezőt vizsgálnak, amely LIDAR szenzor segítségével érzékeli a tőkehiányokat és a lombozatban található hézagokat, és ennek megfelelően végzi a növényvédelmi kezeléseket. A 2021-ben végzett tesztelések alapján a fejlesztés révén gyümölcsösben 20-30, szőlőültetvényben akár 50%-os növényvédőszer-megtakarítás érhető el.

A kijuttatott mennyiség rugalmas változtathatósága lehetőséget ad rá, hogy kevesebb növényvédő szerrel védjük meg a szőlőt. Ennek egyik módja az, hogy a traktor elején elhelyezett szenzor érzékeli a tőkehiányokat, majd ezt az információt továbbítja a permetezőnek, ami az üres tőkehelyen elzárja a fúvókákat. A módszer nem csupán anyagi megtakarítást jelent, de a környezetterhelést is mérsékli.

Önállóan dolgoznak

A robotika ugyancsak a precíziós gazdálkodás egyik fő eleme, amivel ellensúlyozható a fokozódó munkaerőhiány. A szőlőtermesztésben végzett gépi műveletek robotizálása is megoldható.

Napjainkban legtöbbször talajápoló robotokkal találkozhatunk az ültetvényekben.

A sorközök és a soralj időszakos vagy állandó talajtakarását a takarónövényzet növekedési ütemének, a talaj tápanyagtartalmának és a lehullott csapadéknak a függvényében a vegetációs időben többször is kaszálni kell. Erre a célra különböző munkagépeket használhatunk, de lehetőség van az emberi jelenlét nélkül, önállóan működő robotok alkalmazására is, amelyek akár éjjel is képesek dolgozni. Az egyik legkorábban bemutatott szőlészeti robot a napelemmel működő Vitirover volt. A gép óránként körülbelül 300 méter megtételére képes, így egy eszköz kéthektáros terület talajápolását képes elvégezni úgy, hogy működés közben a GPS-koordináták alapján megadott parcella-lehatárolásokon belül marad. A Naïo Ted a Vitiroverrel ellentétben nem a sorok alatt, hanem a hidastraktorokhoz hasonlóan a lombozatot körülölelve halad a sorban, és különböző ujjas tárcsákkal és kitérő rendszerű eszközökkel gyom­mentesíti a soraljat. Hasonló célokat szolgálnak a Sitia PUMAgri vagy a VitiBot Bakus munkagépei.

A fitotechnikai műveletek közül a metszés az egyik legnagyobb időráfordítást igénylő munka, ennek az automatizálása régóta foglalkoztatja a szakembereket.

A tőkék előmetszésére már rendelkezésre áll a technológia, de a metszési elemek számának és hosszának beállítása ma még szinte kizárólag kézzel történik, jóllehet, vannak ennek kiváltására irányuló fejlesztések, mint például a francia fejlesztésű Wall-Ye V.I.N. robot.

A növényvédelem ugyancsak nagy idő- és energiaráfordítással jár, gépekkel történő teljes kiváltása fontos irány a robotikában, amire az olasz Rovitis, vagy a japán YanmarYV01 fejlesztést mutatjuk be példaként. Utóbbi eszköz mindössze egytonnás, így működése közben mérsékelten tömöríti a talajt, és akár a meredekebb, 45%-os lejtésű termőhelyeken is alkalmazható. Ugyancsak a növényvédelmi feladatokban nyújthat segítséget a spanyol és olasz közös fejlesztésben készült GRAPE (Ground Robot for vineyArd Monitoring and ProtEction) feromonpárologtatókat kihelyező robotja.

Az ültetvények gépi szüretelése ma már rutinművelet, azonban csak a borszőlőfajtáknál váltja ki a kézi munkaerőt. A csemegeszőlőt a fürtök épségének megőrzése érdekében ma még kézzel szüretelik.

Azonban az XTS Technologies fejlesztése alapján a jövőben könnyen lehet, hogy robotok gyűjtik be az optimális érettségű fürtöket. A Virginia (USA) székhelyű Digital Harvest ROVR (Remote Operated Vineyard Robot) elnevezésű kezdeményezése ennél is továbbmegy, ugyanis rendszerükben a robotok nem autonóm módon, hanem távoli eléréssel, emberi irányítással végzik a munkát, így például a szüretet.

Amikor a precíziós gazdálkodásról olvasunk, a legtöbbször az ültetvények vagy növényállományok felett feladatot teljesítő drónok jutnak eszünkbe. Ez érthető, hiszen a pilóta nélküli eszközök, vagy ahogy sokszor olvashatunk róluk, UAV-k (Unmanned Aerial Vehicle = személyzet nélküli légi jármű) számos precíziós feladatot elláthatnak. Az ültetvények állapotfelmérése leggyakrabban drónok segítségével történik, hiszen azok akár hagyományos RGB-, de multi- vagy hiperspektrális kamerát is szállíthatnak és segítségükkel elkészíthetők a légi felvételek.

Az utóbbi években egyre többször kerül előtérbe a drónos permetezés, ami a nehezen megközelíthető vagy bejárható ültetvényekben jelenthet megoldást. Jelenleg azonban a dró­nok­kal történő növényvédelem még csak kísérleti céllal engedélyezett.

Működésük egyszerűnek tűnhet, hiszen irányításuk könnyen elsajátítható, azonban a megfelelő felvételek elkészítése és azok georeferált felhasználása szakértelmet kíván. Szerencsére több olyan tanfolyam is elérhető, ahol elsajátítható a drónok működése és az általuk készített felvételek feldolgozása.

Nemcsak tanfolyamok, hanem egyéb lehetőségek is rendelkezésre állnak, ha a precíziós gazdálkodásról szeretnénk mélyebb ismereteket szerezni. A digitális jólét program részeként indult el 2019-ben a digitális agrárstratégia, melyben a digitális agrárakadémia (DAA) online felület segíti a tudásmegosztást. Jelenleg kilenc modulban 31 online ismeretterjesztő anyag mutatja be a farmmenedzsment, a szántóföldi növénytermesztés, az állattenyésztés, a kertészet, a szőlészet és borászat, az erdészet precíziós megoldásait, kiegészülve a precíziós gépek ismertetésével, valamint a távérzékelés és a digitális termelői piac modullal, ez utóbbi a termékpályákon alkalmazható digitális megoldásokat ismerteti.

Mivel a digitális megoldások a gyakorlatban mutatják meg valódi hatékonyságukat, a DAA ismerteti azokat a bemutató gazdaságokat, ahol már bevezették a korszerű technológiákat, és akik meg tudják osztani az ezzel kapcsolatos tapasztalataikat.

A robotok nagy valószínűséggel még évtizedekig nem veszik át a helyünket a szőlőültetvényekben, de a precíziós gazdálkodás egyéb technológiai elemei minden bizonnyal egyre népszerűbbek lesznek, és terjedésükkel csökkenthetővé válik a környezetterhelés, a gazdálkodás pedig hatékonyabb és jövedelmezőbb lesz.

Bodor-Pesti Péter, Fazekas István, Varga Zsuzsanna, Deák Tamás

Magyar Agrár- és Élettudományi Egyetem, Szőlészeti és Borászati Intézet

Forrás: Kertészet és Szőlészet